Using a land cover classification based on satellite imagery to improve the precision of forest inventory area estimates
نویسندگان
چکیده
Estimates of forest area were obtained for the states of Indiana, Iowa, Minnesota, and Missouri in the United States using stratified analyses and observations from forest inventory plots measured in federal fiscal year 1999. Strata were created by aggregating the land cover classes of the National Land Cover Data (NLCD), and strata weights were calculated as proportions of strata pixel counts. The analyses focused on improving the precision of unbiased forest area estimates and included evaluation of the correspondence between forest/nonforest aggregations of the NLCD classes and observed attributes of forest inventory plots, evaluation of the utility of the NLCD as a stratification tool, and estimation of the effects on precision of image registration and plot location errors. The results indicate that the combination of NLCD-based stratification of inventory plots and stratified analyses increases the precision of forest area estimates and that the estimates are only slightly adversely affected by image registration and plot location errors. D 2002 Elsevier Science Inc. All rights reserved.
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملMulti-Temporal Assessment of Mangrove Forests Change in the Coastal Areas of Bushehr Region Based on Landsat Satellite Imagery
Continual access to precise information about the land use/land cover (LULC) changes of the Earth’s surface is extremely important for any sustainable development program in which LULC serves as one of the major input criteria. In this study, a supervised classification was applied to three Landsat images collected in 1986, 1998and 2018, providing mangrove forests change data in the coastal are...
متن کاملEvaluating Classified MODIS Satellite Imagery as a Stratification Tool
The Forest Inventory and Analysis (FIA) program of the USDA Forest Service collects forest attribute data on permanent plots arranged on a hexagonal network across all 50 states and Puerto Rico. Due to budget constraints, sample sizes sufficient to satisfy national FIA precision standards are seldom achieved for most inventory variables unless the estimation process is enhanced with ancillary d...
متن کاملAssessing Tree Cover in Agricultural Landscapes Using High-Resolution Aerial Imagery
Trees used in agroforestry practices, such as windbreaks, provide a variety of ecosystem benefits and are recognized globally as an important land use. However, efforts to inventory and monitor agroforestry land use have been sporadic, short-lived, or focused on small spatial extents. There are a variety of satellite-derived datasets that provide information about tree cover over broad spatial ...
متن کاملEffects of satellite image spatial aggregation and resolution on estimates of forest land area
Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We spatially aggregated 30 m data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002